
JOURNAL OF COMPUTATIONAL PHYSICS 61, 391402 (1985) 

The Back-Projection Angular 
Flux Estimator 

WILLIAM L. DUNN 

Applied Research Associates. Inc., 4917 Professional Court, Raleigh, North Carolina 27609 

Received August 16, 1984; revised January 15, 1985 

A method of obtaining point angular flux estimates in Monte Carlo radiation transport 
calculations is presented. The method involves the back-projection of an area to define the 

volume within which interactions must occur in order to contribute to the desired angular flux 
and a limiting process to shrink the area to a line or a point. The approach is dcvclopcd here 

by considering specific versions of the searchlight problem. Sample results generated using the 
estimator are given. (0 1985 Academic Press, Inc 

Various flux estimators have been developed for Monte Carlo radiation transport 
calculations [l 61. Most of these estimators are based on physical principles and 
the definitions of flux or flux-related quantities. For instance, the reaction rate per 
unit volume is given by the product of scalar flux, @, and the appropriate 
macroscopic cross section, 6, so that the so-called collision density estimator can be 
formed as 

where Wij is the weight at thejth relevant collision in volume V during history i, vi 
is the number of such collisions, and N is the number of histories. Similarly, the 
boundary crossing estimator, 

where ujiYis the magnitude of the cosine of the angle between the normal to area .4 
and the direction of particle history i during its jth path, results directly from the 
definition of current and its relation to flux. 

Many existing estimators for obtaining angular flux at a point require that small, 
but finite, spatial and angular intervals be constructed through which the particles 
either migrate naturally (which is usually quite rare) or must be forced to migrate. 
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In either case, the flux quantity obtained is an average over finite intervals and truly 
point quantities are estimated by extrapolation, interpolation, or some similar 
means. For instance, we note that the denominators of Eqs. (1) and (2) contain, 
respectively, the volume V and area A of finite regions. As these quantities get 
smaller, the simulation becomes less efficient and in the limit as I’ and A tend to 
zero, the estimators lose their meaning. 

Other estimators have been developed, such as the track-length, next-flight, and 
track rotation estimators, and a number of Monte Carlo codes have been written 
(e.g., MCNP and MORSE) that are capable of obtaining useful angular flux 
estimates. It is not our intention, however, to critically evaluate these existing 
estimators and codes (most have been treated extensively in the literature [l-S]) 
but rather to present an analysis that can be used to derive a new estimator for the 
angular flux in a given direction, R, that avoids the use of finite spatial (and/or 
angular) intervals in its final form. The estimator is called the back-projection 
angular flux estimator because it relies on projecting an area in the -a direction, 
thus describing the volume within which interactions must occur in order to con- 
tribute to the desired angular flux. One obtains point fluxes by employing a limiting 
process in order to shrink the area to a line or a point. Such an estimator can be 
useful, for instance, in estimating the exit angular flux at the boundaries of a 
medium, as we will show for one form of the searchlight problem, or at internal 
points. 

ANALYSIS 

The Monte Carlo method is based on general principles and theorems but its 
application is highly problem-specific. Viewed as a type of quadrature, its particular 
form (i.e., nodes and weights) can change dramatically from one problem to 
another. For this reason, we introduce the concept of the back-projection angular 
flux estimator by considering a particular, idealized application; we then discuss 
ways in which it can apply more generally. 

To begin, we seek estimates of the exit normal flux at various, specified radial dis- 
tances p, expressed in mean free paths, on the two surfaces of a uniform, plane- 
parallel slab of optical thickness Z, subject to a radiation beam incident normally to 
one surface at a point. The medium scatters isotropically and without inducing 
energy changes and there are no multiplicative or inelastic interactions so that the 
mean number of secondary particles per collision, c, is also the ratio of scatter to 
total cross sections. (This idealized problem was initially considered in order to 
verify a semianalytic solution that will be described in a subsequent paper.) 

We construct a Cartesian reference frame whose origin is coincident with the 
point of incidence and whose positive z axis is parallel to the incident beam, as in 
Fig. 1. Particle position is specified in cylindrical coordinates (p, q, z) with q 
measured in the x, y plane counterclockwise from the positive x axis, and particle 
direction is specified by the unit vector a, which can be expressed in terms of the 
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Incident 

FIG. 1. Geometry for the exit normal flux estimator. 

direction cosines (CC, fi, y) or can be writtern R = Q(y, d), with y the z direction 
cosine and 16 the azimuthal angle, also measured counterclockwise from the positive 
x direction. In order to construct our angular flux estimators, we consider the 
annular area between two imaginary circles with radii p and p + E centered on the z 
axis on each of the boundary planes. By back-projecting these areas in directions 
opposite to the boundary outward normals, we obtain a volume between two con- 
centric, right-circular cylinders (see Fig. 1) within which scatters must occur in 
order to contribute to the desired quantities; we call this volume the back-projected 
volume. 

We let the estimators 6p0 and SpT represent the contributions after each scatter 
to the exit angular flux at (p, q, 0) and (p, q, ‘c), respectively, in the direction of the 
outward normal to each local surface. We construct these estimators by (a) 
extending the path from each scatter point (x, y, z) in the sampled direction s1 to its 
intersections (if any) with the annular region between the cylinders (in a next-fhght 
sense), (b) forcing a “pseudo-scatter” there that directs the particle in an outward 
normal direction, (c) forcing the particle to escape, and (d) scoring with a boun- 
dary crossing estimator. 

The term “pseudo-scatter” is used to mean a forced interaction within the back- 
projected volume that scatters the particle into the desired direction (in this case 
y = - 1 for S!?, and y = 1 for Sp,). We note that there can be zero, one, or two 
pseudo-scatter sites for any given photon path, depending on the number of inter- 
sections of the extended particle path with the back-projected volume. 

In order to obtain point flux estimators, we take the limit as E -+ 0 of the resulting 
expression, obtaining the general forms 
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(4) 

where W is the incoming history weight; v is the number of pseudo-scatter sites for 
the particular path; PI(s) is the probability of reaching and then interacting at the 
ith pseudo-scatter site; Q is the probability of scattering into the unique direction 
that would allow the particle to exit normal to one of the boundary surfaces 
(y = - 1 for the z = 0 surface and y = 1 for the z = r surface); R, 0 and R, r are the 
probabilities of reaching the surfaces at z = 0 and z = r, respectively, from the ith 
pseudo-scatter site; A(E) is the area of the annular ring on either surface through 
which the exiting particles pass; and w0 and o, are the cosines of the angles 
between the outward normals to the areas A(E) and the directions df the exiting 
particles. In the case being considered, 

PO(E) = 0, (54 
pl(E)=e-DI+ -e-D2t(E) 

> (5b) 

and 

where 

with 

P2(E)=e-02-(“)--e-Dl-, (5c) 

(6) 

(7) 

and 

D 1+ = D, + (0). (8) 

Here, D, and DZ(&) are the distances from the interaction point in the direction fl 
to the intersections with the cylinders at radii p and p + E, respectively, as shown for 
one case in Fig. 2. We note that Eq. (6) gives the solutions to the quadratic 
equation that results from finding the intersections of the line 

x,=YY,-Y 

CI 
- = DZ(&) 

B (9) 
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FIG. 2. The distances D, and D, for a particular case. 

with the cylinder 

x: + y; = (p + E)2. 

The remaining quantities in Eqs. (3) and (4) can be written 

since the scattering is isotropic, 

and 

R 0,o - - Ro, r = 0, 

R I,O =e -(“+YDI+) 3 

R 2,0 =e 
-(z+YDI-) 

7 

R,,. =,-(T-=-Y@+) 

R 2,T = 
e-(z-Z-yD,-) 

> 

A(&) = 27cps 

w,=w,=l. 

After substituting and applying l’H6pital’s rule, we obtain 

sPo =o, Y = 0, 
wce-C’fDI+(‘+Y)l 

“-2 8n (cr2+/3+fo ’ 
v= 1, 

WCe-C~+~l-cl+Y)l+,-C~+~l+cl+Y~l 
=- 

8n2 (Lx2+~2)do ’ 
Y = 2; 
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and 

S!P$ =o, v = 0, 

v= 1, 

Wa) 

(16b) 
~Ce-[‘-t+D’+(‘--)r)l 

=2 87~ (a”+p)do ’ 

~~,-~~-z+Dl-~1-Y~l+,-r~-z+~l+~1-Y)l 
=- 

8x2 (a2 + P’) 4 
1 v = 2, (16~) 

where 

do = d(O). (17) 

Equations (15) and (16) give the back-projection angular flux estimators for the 
exit normal fluxes at radius p for the considered searchlight problem. The 
estimators are independent of E and hence give point angular flux estimates directly. 

We suggest that the estimators of Eqs. (15) and (16) can be used in the following 
way. During simulation, force a scatter at each interaction site, with weight c; the 
weight factor W will then have the value cj after the jth interaction. At each scatter 

TABLE I 

Monte Carlo Estimates of the Exit Normal Fluxes 

0.001 5.49(O) 
0.01 5.43( - 1) 
0.1 4.60( - 2) 
0.2 1.97( - 2) 
0.4 7.44( - 3) 
0.6 3.76( - 3) 
0.8 2.17( -3) 
1.0 1.32( - 3) 
1.2 8.79( - 4) 
1.4 5.71( - 4) 
1.6 4.01( -4) 
1.8 2.65( - 4) 
2.0 1.98( -4) 
2.2 1.40( - 4) 
2.4 1.05( - 4) 
2.6 7.06( - 5) 
2.8 5.46( - 5) 
3 4.18( - 5) 
4 l.Ol( -5) 
5 2.54( - 6) 

4.5( - 2) 
3.7( - 3) 
3.0( - 4) 
1.4( - 4) 
6.5( -5) 
4.1( -5) 
2.6( - 5) 
1.4( - 5) 
1.2( - 5) 
7.6( -6) 
6.4( - 6) 
3.9( - 6) 
3.6( - 6) 
2.8( - 6) 
2.9( - 6) 
1.4( - 6) 
1.4(-6) 
1.2( - 6) 
4.7( - 7) 
1.5(-7) 

4.69(O) 
4.65( - 1) 

4.11( -2) 
1.82(-2) 
7.08( - 3) 
3.60( - 3) 
2.12( - 3) 
1.29( - 3) 
8.59( - 4) 
5.64( - 4) 
3.98( - 4) 
2.63( - 4) 
1.95( - 4) 
1.38( -4) 
1.02( -4) 
7.11(-5) 
5.60( - 5) 
4.15( - 5) 
l.lO( - 5) 
2.55( - 6) 

4.2( - 2) 
3.3( - 3) 
2.6( - 4) 
1.4( - 4) 
6.7( - 5) 
3.4( - 5) 
2.7( - 5) 
1.4(-5) 
l.l( -5) 
8.7( - 6) 
6.1( -6) 
3.9( - 6) 
3.4( - 6) 
2.8( -6) 
2.4( - 6) 
1.5(-6) 
1.7( - 6) 
l.l( -6) 
4.8( - 7) 
1.8( -7) 

Note. Y,, and (u, are the exit normal fluxes on the z = 0 and z = z surfaces, respectively, for the case 
c=O.8 and t= 1. 
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site, sample the scatter angles, update the direction cosines, score the angular flux 
with the back-projection estimator, pick the distance to the next interaction and 
continue as above until either the particle migrates from the medium or the history 
weight falls below some specified cutoff value. 

We have used this approach to generate the results shown in Table I for the case 
c = 0.8 and t = 1. The FORTRAN 77 code was run on a Hewlett-Packard (HP) 
1000 Model 6 microcomputer and 50,000 histories were simulated. Estimates of t 
exit normal fluxes and their sample standard deviations on both surfaces are 
shown; the numbers in parentheses are the exponents from the scientific notation 
representation. 

GENERALIZATION 

Presume that we now seek the exit angular flux in direction SL, = ( - yO, y), 
y0 > 0, at position (p, q) on the z = 0 surface for the geometry and incident dis- 
tribution just considered. We back-project the annular area on the z = 0 surface in 
the - Q, direction, constructing an annular region between two hypothetical conic 
sections, as shown in Fig. 3. The back-projection angular flux estimator is of the 
same general form as Eq. (3) but some of the factors are different. The factor o0 
becomes o0 = y0 and the escape probabilities are of the slightly modified form 

and 

R 2,0 =e -(z+Y~i-)ho (IXC) 

Incident 

FIG. 3. Geometry for the exit flux estimator in direction Cl, = ( - y,,, q), with Yo > 0. 

5X1/61/3-4 
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The probabilities of interacting within the region between conic sections depend on 
the order in which the conic sections are encountered (see paths 1 and 2 in Fig. 3). 
Thus, 

PO(E) = 0, (194 

PI(&)= * [,-Di+ -,-Dz+q, (19b) 

and 

where the leading “ + ” sign is used if the conic section whose vertex is at (0, 0, lo) is 
encountered first and the leading “ - ” sign is used otherwise. Here 

with 

T= il- YV2 
> 

YO 

(20) 

(21) 

and the D + values are determined from the intersections of a ray and the conic sec- 
tions. 

After substituting, taking the limit as E + 0, and applying l’H6pital’s rule, the flux 
estimator after each interaction is 

bPo =o, 

=&Do+ep rDl+ + (2 + YD1 + l/ml 
7 

0 

=--T-- 8x7~ ‘D o+e 
- I& + + (2 + YDI + Vrol 

0 

+Doee-[Dl- +(z+Y&-)/ml 
17 

where 

and 

D li = -to -tdo 

v = 0, 

v= 1, 

(22a) 

(22b) 

v=2 c=c) 

(231 

(24) 
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with 

to = aoy(z - Co) - ax - Pv 
a*+p*-a,y2 ’ 

do= ;5;- 
L 

x2 + y* - UO(Z - &J* 
I 
1’2 

a*+p-uaoy2 ’ 
i 

G= - QOY 
T(cr2 + /I* - aoy2)’ 

and 

d;’ ‘t6 ao(z - 50) -- 
0 T do@* + p2 - a,y*)’ 

(291 

A similar analysis can be used to generate Sp, for this case. The result is of the 
same form as Eqs. (22) with all (z + yD,) quantities replaced by (r -z - yD,) terms. 

We note that in the limiting case as y0 -+ 1, it is a simple matter to show that 
T-+0, a, 30, To -+ co, and D,, -+ + ~/[(a’ + p’) d,,], so that Eqs. (22) reduce to 
Eqs. (15) for the exit normal flux estimator. 

We note further that incident particles entering the medium at (0, 0,O) with 
rx. = p = 0 and y = 1 must scatter at the point (0, 0, co), the vertex of the conic sec- 
tion, in order to exit at (p, q) in the direction 0, after only one interaction. The 
single-scatter component of the angular flux can be obtained from Eq. (22) by 
letting a = fl= 0 and taking the limit as y -+ 1, which yields, for 0 < y0 < 1, 

‘v,(P,Y,O, -yo,yI)= c - io(l + UYO) 
87c2pyoTe ’ 

p<rT (30al 

= 0, p>zT. Wb) 

This result is equivalent to that of Siewert and Dunn [IS], developed by the F, 
method, for the single-scatter component from a half-space subject to the incident 
angular flux WP, ~~0, 24 d) = G)@Y - 1 Hai - ~oY(27v), Y > 0. 

The estimator of Eqs. (22) was used to give the results shown in Table II for the 
case c = 0.8, z = 1, and y0 = 0.5. These results were generated by a FORTRAN 77 
code run on the HP 1000 Model 6 in which 20,000 histories were simulated. Also 
shown in Table II are the sample standard deviations and the single-scatter com- 
ponents calculated from Eqs. (30). 

The back-projection estimator can be used to obtain energy- or frequency-depen- 
dent fluxes in the standard Monte Carlo manner by scoring over linite energy or 
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TABLE II 

Monte Carlo Estimates of the Exit Angular Flux 

0.001 2.77(l) 1.8(O) 1.17(l) 
0.01 2.74(O) 1.7( - 1) 1.15(O) 
0.1 2.54( - 1) 1.7( - 2) 9X4( - 2) 
0.2 1.16( - 1) 8.0( - 3) 4.14( -2) 
0.4 6.18( - 2) 1.3( - 2) 1.46( -2) 
0.6 3.27( - 2) 6.5( - 3) 6.90( - 3) 
0.8 1.95( - 2) 3.9( - 3) 3.66( - 3) 
1.0 1.30( - 2) 2.7( - 3) 2.07( - 3) 
1.2 8.31( - 3) 1.9( - 3) 1.22( - 3) 
1.4 4.49( - 3) l.l(-3) 7.39( - 4) 
1.6 2.00( - 3 ) 1.7( -4) 4.58( - 4) 
1.8 9.72( - 4) 1.2( -4) 0.00 
2.0 6.11( -4) 7.6( - 5) 0.00 
2.2 3.87( - 4) 4.q - 5) 0.00 
2.4 2.31( -4) l.l( -5) 0.00 
2.6 2.09( - 4) 4.0( - 5) 0.00 
2.8 1.77( - 4) 3.9( - 5) 0.00 
3 1.41(-4) 3.5( - 5) 0.00 
4 3.48( - 5) l.l(-5) 0.00 
5 5.63( - 6) 1.3( - 6) 0.00 

Nate. Y, and the once-scattered component, ‘f’I, on the z=O surface for the case c =0.8, 7 = 1, 
y. = 0.5, and 4 = q. 

frequency intervals. Also, it is a simple matter to extend the analysis to the 
anisotropic case by replacing Q = c/(47r) by 

(31) 

where dC,/dQ is the differential scattering cross section, fi is the direction from the 
real scatter point to the pseudo-scatter point, ST&, is the direction in which the 
angular flux estimate is desired and L’, is the total cross section. Although we have 
expressed our estimators for fluxes at the boundaries, they apply equally well at 
internal points; it is simply necessary to convert the escape probabilities Ri.o and 
R, + to expressions that describe the probabilities of reaching the appropriate inter- 
nal points. 

We expect that the method can be extended to obtain estimators for the angular 
flux in arbitrary directions at arbitrary positions and we intend to investigate this 
possibility in future work. 
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CONCLUSIONS 

The back-projection angular flux estimator employs a limiting process before the 
simulation, obviating the need to find average llux values over finite spatia1 and 
angular intervals. The analysis has been used to develop certain surface angular flux 
estimates for the searchlight problem, with normal incidence and under some 
restrictions on azimuthal symmetry. It is hoped that these symmetry restrictions can 
be relaxed in future work. It is noted that use of the back-projection estimator 
makes possible certain analytic results, such as Eq. (30a), without the need to per- 
form any simulations. 

The main virtue of this approach is that the form of the estimator is independent 
of angular or spatial interval sizes and hence the estimator provides an efficient 
means to estimate point angular fluxes directly. The ability to estimate angular flux 
at a point is useful in a variety of radiation transport calculations. For instance, in 
x-ray imaging work (such as computed tomography), the process of designing 
collimators to reduce the scattered radiation contribution to the detector response 
could benefit from a knowledge of the angular flux distribution exiting the object to 
be imaged. Also, in active remote sensing applications where a directed microwave 
beam is incident on a medium, the angular distribution of the transmitted and/or 
backscattered radiation is dependent on certain properties of the medium. methods 
for estimating that angular distribution could be helpful in designing models to 
infer these properties. 

The major restriction of the method as it has been applied here is that it applies 
only on lines of symmetry (circles in the x-y plane) and that it requires that the 
azimuthal direction angle, 4, be equal to the spatial azimuthal angle, q. The exten- 
sion to more general cases would appear in principal to be possible, though 
geometrically complex. In any event, the estimator is efficient and useful for the 
cases discussed. 
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